Bienvenue sur le profil Malt de Hao !
Localisation et déplacement
- Localisation
- Paris, France
- Télétravail
- Effectue ses missions majoritairement à distance
Préférences
- Durée de mission
-
- ≤ 1 semaine
- ≤ 1 mois
- Secteur d'activité
-
- Aéronautique & aérospatiale
- Agroalimentaire
- Architecture & urbanisme
- Arts & artisanat
- Automobile
+38 autres
- Taille d'entreprise
-
- 1 personne
- 2 - 10 personnes
- 11 - 49 personnes
- 50 - 249 personnes
- 250 - 999 personnes
+2 autres
Vérifications
Charte du freelance Malt signée
Consulter la charte
Langues
Catégories
Compétences (7)
- Data Science
-
-
-
- Tous
-
1
-
1
-
1
-
Hao en quelques mots
Expériences
SODEXO - Sodexo
Restauration
Senior data scientist
- Dynamic pricing for corporate France, US
- New food model of digital transformation in China
- AI asset initiation and developement
- Participate the whole project life cycle: Project framing, MVM(minimum viable model), MVP(minimum viable product), Industrialization
- In charge of conception and on boarding of data driven solution (BI, AI) to address business needs and pain point
- Coach data scientists resources on retail, pricing projects
Main contributor of NLP asset of Sodexo Data Factory:
- Standard pipeline for NLP tasks include sentiment analysis, topics extraction, topics classification (Bert, GPT-3 etc)
IBM France
High tech
Data Scientist & Machine Learning Engineer
- Creation of data pipeline: massive timeseries data treatment and analysis by using Pyspark
- Creation of machine learning pipeline: models (deep learning: Autoencoder) development and hyper-parameters tuning (Bayesian Optimization)
- Deployment of data pipeline and machine learning pipeline for real time prediction to provide KPI in dashboard for anomaly detection
Technical environment: Pyspark, Tensorflow, Keras, Amazon AWS, Palantir
2. Ipsen & Roche: Prediction of adverse event of medications for Pancreas cancer; Prediction of treatment switch in diabetes type-2 patient journey.
- Defining hypothesis and cohort
- Feature engineering: cleaning data and creation of data model
- Advanced analytics: demographics analysis
- Creation of machine learning pipeline: deep learning model (LSTM) to predict time series event (adverse event); Cox analysis model (diabetes)
- Creating causal inference model for causality analysis and for eliminating bias in data
Technical environment: Jupyter notebook, Pycharm, Tensorflow, Keras, IBM explorys, SQL, Docker
3. POC for Nissan: Artificial intelligence solution for guided diagnostic of vehicles (Natural Language Processing NLP).
- Transformation of unstructured data (customer complains e-ticket) to structured data (NLP text analysis)
- Feature engineering: cleaning and standardising data
- Machine learning modelling: creating prediction models to precisely classify e-ticket.
Technical environment: Jupyter notebook
4. Compliance Watson for financial services of Crédit Mutuel: fraud detection and investigation of abnormal transactions against fraud and terrorist activities; customers retention.
-Feature engineering: cleaning, generation and exploitation of data for investigation
-Advanced analytics: data analysis
-Data modelling and AI modelling: creation of data model and machine learning prediction models.
Technical environment: Jupyter Notebook, SPSS, SQL, Watson Studio
Ecole Centrale de Lyon
Centres de recherche
Researcher
In charge of coordinating two R&D teams between Ecole Centrale de Lyon and Insa Lyon.
Université Paris Saclay
Centres de recherche
Researcher
Recommandations externes
Consultez les recommandations qu'a reçues Hao